# DigiChrom

Digital tools for improving electroplated layers using the example of chromium(III)-based processes





#### Application areas

General information

**Process optimization:** Understanding of process-structure-property relation for efficient electroplating. **Product development/design:** Hard Chrom layer - Goal: obtain a layer with microcracks, which is highly resistant to corrosion. Decorative chromium layer – Goal: obtaining a color fidelity layer with high corrosion resistance.

**Quality control**: Improve the process stability and capability of chromium plating. **Product Lifecycle** 

Manufacturing process: Electroplating

#### Approach

**Experiments:** Electroplating in trivalent chromium-based electrolytes, Characterization of layers. **Computer Simulations:** Simulations of microstructure and mechanical properties with FEM.

**ML/Statistical/Big data:** Decision trees, CNN, Multiple linear regression, SQL database. **Coupled:** Experiments provide large amounts of data, which are analysed using ML. Information for the simulation is generated from the experiments. Results of simulations are incorporated into ML.

## Centrality of FAIR

**Findability**: CoatO ontology registered at a suitable service. Ontology classes identified by PID. **Accessibility**: Conceptual model mapped to CoatO. Implemented as a data interface by multiple partners. **Interoperability**: CoatO written in OWL, follows FAIR principles, based on ISO/IEC 21838-2:2021. **Reusability**: CoatO uses open license & version control. Development process meets best practices.

### Aspects of digitalization

Semantic Interoperability

**Procedures for ontology development:** Development of application ontology, Integration of chemical data, Domains Coating/Layer materials.

Data transformation using ontologies: Transform process and characterization data.

Publishing knowledge graphs: about process-structure-property relationship in electroplating.

Workflows benefitting from knowledge graphs: Digitalization and merging of experimental data, lab book and characterization data.

LLM integration: Easier access to the data and evaluations.

## **Types of Workflows**

Workflows

**Data acquisition from experiments:** Coating experiment, equipment controls are automated, Chemical analysis, Characterization of the layers, excel data as output.

**Post-processing/analysis of raw data:** Preparation of raw data from experiments for semantic annotation using Microsoft Azure Fabric, Python. Statistical analysis.

**Provenance within experimental processes**: Generate enough data for a detailed model of the processstructure-property relationship.

**Machine-learning:** Analysis of the data and create a model of the process-structure-property relationship. Analysing of pictures regarding cracks.

Community

**Computer simulation pipelines:** Simulations for e.g., nanoindentation and determining mechanical properties of chromium layers.

Other initiatives/consortia: Gaia-X: Ecosystem Mobility





Full project information https://material-digital.de/download/2024-10-08\_DigiChrom\_Projektubersicht.pdf

PMD-S

Workflowstore

SimStack